Kinetic description of Bose-Einstein condensation with test particle simulations

Kinetic description of Bose-Einstein condensation with test particle simulations We present a kinetic description of Bose-Einstein condensation for particle systems being out of thermal equilibrium, which may happen for gluons produced in the early stage of ultrarelativistic heavy-ion collisions. The dynamics of bosons towards equilibrium is described by a Boltzmann equation including Bose factors. To solve the Boltzmann equation with the presence of a Bose-Einstein condensate we make further developments of the kinetic transport model BAMPS (Boltzmann approach of multiparton scatterings). In this work we demonstrate the correct numerical implementations by comparing the final numerical results to the expected solutions at thermal equilibrium for systems with and without the presence of Bose-Einstein condensate. In addition, the onset of the condensation in an overpopulated gluon system is studied in more details. We find that both expected power-law scalings denoted by the particle and energy cascade are observed in the calculated gluon distribution function at infrared and intermediate momentum regions, respectively. Also, the time evolution of the hard scale exhibits a power-law scaling in a time window, which indicates that the distribution function is approximately self-similar during that time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Kinetic description of Bose-Einstein condensation with test particle simulations

Preview Only

Kinetic description of Bose-Einstein condensation with test particle simulations

Abstract

We present a kinetic description of Bose-Einstein condensation for particle systems being out of thermal equilibrium, which may happen for gluons produced in the early stage of ultrarelativistic heavy-ion collisions. The dynamics of bosons towards equilibrium is described by a Boltzmann equation including Bose factors. To solve the Boltzmann equation with the presence of a Bose-Einstein condensate we make further developments of the kinetic transport model BAMPS (Boltzmann approach of multiparton scatterings). In this work we demonstrate the correct numerical implementations by comparing the final numerical results to the expected solutions at thermal equilibrium for systems with and without the presence of Bose-Einstein condensate. In addition, the onset of the condensation in an overpopulated gluon system is studied in more details. We find that both expected power-law scalings denoted by the particle and energy cascade are observed in the calculated gluon distribution function at infrared and intermediate momentum regions, respectively. Also, the time evolution of the hard scale exhibits a power-law scaling in a time window, which indicates that the distribution function is approximately self-similar during that time.
Loading next page...
 
/lp/aps_physical/kinetic-description-of-bose-einstein-condensation-with-test-particle-u3P3SIxILr
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.014020
Publisher site
See Article on Publisher Site

Abstract

We present a kinetic description of Bose-Einstein condensation for particle systems being out of thermal equilibrium, which may happen for gluons produced in the early stage of ultrarelativistic heavy-ion collisions. The dynamics of bosons towards equilibrium is described by a Boltzmann equation including Bose factors. To solve the Boltzmann equation with the presence of a Bose-Einstein condensate we make further developments of the kinetic transport model BAMPS (Boltzmann approach of multiparton scatterings). In this work we demonstrate the correct numerical implementations by comparing the final numerical results to the expected solutions at thermal equilibrium for systems with and without the presence of Bose-Einstein condensate. In addition, the onset of the condensation in an overpopulated gluon system is studied in more details. We find that both expected power-law scalings denoted by the particle and energy cascade are observed in the calculated gluon distribution function at infrared and intermediate momentum regions, respectively. Also, the time evolution of the hard scale exhibits a power-law scaling in a time window, which indicates that the distribution function is approximately self-similar during that time.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off