Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice

Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L×1×1 on a three-dimensional cubic lattice. We observe such a transition for L≥6. For L=6, the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L≥7, the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L=25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 105 particles. The probability density distributions P(Q) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L≥7. We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice

Preview Only

Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice

Abstract

Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L×1×1 on a three-dimensional cubic lattice. We observe such a transition for L≥6. For L=6, the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L≥7, the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L=25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 105 particles. The probability density distributions P(Q) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L≥7. We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC.
Loading next page...
 
/lp/aps_physical/isotropic-nematic-transition-for-hard-rods-on-a-three-dimensional-AVFL8WLDWo
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012104
Publisher site
See Article on Publisher Site

Abstract

Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L×1×1 on a three-dimensional cubic lattice. We observe such a transition for L≥6. For L=6, the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L≥7, the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L=25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 105 particles. The probability density distributions P(Q) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L≥7. We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial