Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor: Theoretical comparison

Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor:... We present a three-dimensional theoretical comparison between the radiation-pressure forces exerted on an atom in an isotropic light cooling scheme and in a six-beam molasses. We demonstrate that, in the case of a background vapor where all the space directions of the atomic motion have to be considered, the mean cooling rate is equal in both configurations. Nevertheless, we also point out what mainly differentiates the two cooling techniques: the force component orthogonal to the atomic motion. If this transverse force is always null in the isotropic light case, it can exceed the radiation-pressure-force longitudinal component in the six-beam molasses configuration for high atomic velocities, hence reducing the velocity capture range. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor: Theoretical comparison

Preview Only

Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor: Theoretical comparison

Abstract

We present a three-dimensional theoretical comparison between the radiation-pressure forces exerted on an atom in an isotropic light cooling scheme and in a six-beam molasses. We demonstrate that, in the case of a background vapor where all the space directions of the atomic motion have to be considered, the mean cooling rate is equal in both configurations. Nevertheless, we also point out what mainly differentiates the two cooling techniques: the force component orthogonal to the atomic motion. If this transverse force is always null in the isotropic light case, it can exceed the radiation-pressure-force longitudinal component in the six-beam molasses configuration for high atomic velocities, hence reducing the velocity capture range.
Loading next page...
 
/lp/aps_physical/isotropic-light-versus-six-beam-molasses-for-doppler-cooling-of-atoms-FXqqS18UPh
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.023411
Publisher site
See Article on Publisher Site

Abstract

We present a three-dimensional theoretical comparison between the radiation-pressure forces exerted on an atom in an isotropic light cooling scheme and in a six-beam molasses. We demonstrate that, in the case of a background vapor where all the space directions of the atomic motion have to be considered, the mean cooling rate is equal in both configurations. Nevertheless, we also point out what mainly differentiates the two cooling techniques: the force component orthogonal to the atomic motion. If this transverse force is always null in the isotropic light case, it can exceed the radiation-pressure-force longitudinal component in the six-beam molasses configuration for high atomic velocities, hence reducing the velocity capture range.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial