Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the zero-bias conductance

Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the... The zero-bias peak (ZBP) is understood as the definite signature of a Majorana bound state (MBS) when attached to a semi-infinite Kitaev nanowire (KNW) nearby zero temperature. However, such characteristics concerning the realization of the KNW constitute a profound experimental challenge. We explore theoretically a QD connected to a topological KNW of finite size at nonzero temperatures and show that overlapped MBSs of the wire edges can become effectively decoupled from each other and the characteristic ZBP can be fully recovered if one tunes the system into the leaked Majorana fermion fixed point. At very low temperatures, the MBSs become strongly coupled. We derive universal features of the conductance as a function of the temperature and the relevant crossover temperatures. Our findings offer additional guides to identify signatures of MBSs in solid state setups. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the zero-bias conductance

Preview Only

Isolating Majorana fermions with finite Kitaev nanowires and temperature: Universality of the zero-bias conductance

Abstract

The zero-bias peak (ZBP) is understood as the definite signature of a Majorana bound state (MBS) when attached to a semi-infinite Kitaev nanowire (KNW) nearby zero temperature. However, such characteristics concerning the realization of the KNW constitute a profound experimental challenge. We explore theoretically a QD connected to a topological KNW of finite size at nonzero temperatures and show that overlapped MBSs of the wire edges can become effectively decoupled from each other and the characteristic ZBP can be fully recovered if one tunes the system into the leaked Majorana fermion fixed point. At very low temperatures, the MBSs become strongly coupled. We derive universal features of the conductance as a function of the temperature and the relevant crossover temperatures. Our findings offer additional guides to identify signatures of MBSs in solid state setups.
Loading next page...
 
/lp/aps_physical/isolating-majorana-fermions-with-finite-kitaev-nanowires-and-mmgxf3EdR0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045135
Publisher site
See Article on Publisher Site

Abstract

The zero-bias peak (ZBP) is understood as the definite signature of a Majorana bound state (MBS) when attached to a semi-infinite Kitaev nanowire (KNW) nearby zero temperature. However, such characteristics concerning the realization of the KNW constitute a profound experimental challenge. We explore theoretically a QD connected to a topological KNW of finite size at nonzero temperatures and show that overlapped MBSs of the wire edges can become effectively decoupled from each other and the characteristic ZBP can be fully recovered if one tunes the system into the leaked Majorana fermion fixed point. At very low temperatures, the MBSs become strongly coupled. We derive universal features of the conductance as a function of the temperature and the relevant crossover temperatures. Our findings offer additional guides to identify signatures of MBSs in solid state setups.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial