Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Physical Review Letters , Volume 119 (2) – Jul 14, 2017

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.

Loading next page...
 
/lp/aps_physical/interrogating-nanojunctions-using-ultraconfined-acoustoplasmonic-06GR0jSW92

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
DOI
10.1103/PhysRevLett.119.023901
pmid
28753345
Publisher site
See Article on Publisher Site

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.