Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)
Preview Only

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.
Loading next page...
 
/lp/aps_physical/interrogating-nanojunctions-using-ultraconfined-acoustoplasmonic-06GR0jSW92
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.023901
Publisher site
See Article on Publisher Site

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off