Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)
Preview Only

Interrogating Nanojunctions Using Ultraconfined Acoustoplasmonic Coupling

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.
Loading next page...
 
/lp/aps_physical/interrogating-nanojunctions-using-ultraconfined-acoustoplasmonic-06GR0jSW92
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.023901
Publisher site
See Article on Publisher Site

Abstract

Single nanoparticles are shown to develop a localized acoustic resonance, the bouncing mode, when placed on a substrate. If both substrate and nanoparticle are noble metals, plasmonic coupling of the nanoparticle to its image charges in the film induces tight light confinement in the nanogap. This yields ultrastrong “acoustoplasmonic” coupling with a figure of merit 7 orders of magnitude higher than conventional acousto-optic modulators. The plasmons thus act as a local vibrational probe of the contact geometry. A simple analytical mechanical model is found to describe the bouncing mode in terms of the nanoscale structure, allowing transient pump-probe spectroscopy to directly measure the contact area for individual nanoparticles.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial