Interplay of magnon and electron currents in magnetic heterostructure

Interplay of magnon and electron currents in magnetic heterostructure In magnetic materials, both electrons and magnons are capable of carrying angular momentum currents. An external electric field can efficiently drive a charge and spin current of electrons, but it is unable to directly produce a chargeless magnon current. The generation of the magnon current is conventionally achieved via thermal gradients or the electron spin injection from interfaces. Here, we investigate the magnon current induced by the momentum and angular momentum transfer from conduction electrons in magnetic layered systems. By using the generic exchange interaction between electrons and magnons, we derive the coupled diffusion equations for electron spins and magnons and we find (a) the ratio between the magnon current and the electric charge current is substantial at room temperature for conventional conducting ferromagnets, (b) the spin diffusion length of electrons is significantly modified by the presence of the nonequilibrium magnon density, and (c) the giant magnetoresistance of the magnetic multilayers for the current perpendicular to the plane of layers is reduced compared to the prior theory without taking into account the magnon current. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Interplay of magnon and electron currents in magnetic heterostructure

Preview Only

Interplay of magnon and electron currents in magnetic heterostructure

Abstract

In magnetic materials, both electrons and magnons are capable of carrying angular momentum currents. An external electric field can efficiently drive a charge and spin current of electrons, but it is unable to directly produce a chargeless magnon current. The generation of the magnon current is conventionally achieved via thermal gradients or the electron spin injection from interfaces. Here, we investigate the magnon current induced by the momentum and angular momentum transfer from conduction electrons in magnetic layered systems. By using the generic exchange interaction between electrons and magnons, we derive the coupled diffusion equations for electron spins and magnons and we find (a) the ratio between the magnon current and the electric charge current is substantial at room temperature for conventional conducting ferromagnets, (b) the spin diffusion length of electrons is significantly modified by the presence of the nonequilibrium magnon density, and (c) the giant magnetoresistance of the magnetic multilayers for the current perpendicular to the plane of layers is reduced compared to the prior theory without taking into account the magnon current.
Loading next page...
 
/lp/aps_physical/interplay-of-magnon-and-electron-currents-in-magnetic-heterostructure-i9ePUVcsBT
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024449
Publisher site
See Article on Publisher Site

Abstract

In magnetic materials, both electrons and magnons are capable of carrying angular momentum currents. An external electric field can efficiently drive a charge and spin current of electrons, but it is unable to directly produce a chargeless magnon current. The generation of the magnon current is conventionally achieved via thermal gradients or the electron spin injection from interfaces. Here, we investigate the magnon current induced by the momentum and angular momentum transfer from conduction electrons in magnetic layered systems. By using the generic exchange interaction between electrons and magnons, we derive the coupled diffusion equations for electron spins and magnons and we find (a) the ratio between the magnon current and the electric charge current is substantial at room temperature for conventional conducting ferromagnets, (b) the spin diffusion length of electrons is significantly modified by the presence of the nonequilibrium magnon density, and (c) the giant magnetoresistance of the magnetic multilayers for the current perpendicular to the plane of layers is reduced compared to the prior theory without taking into account the magnon current.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 31, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial