Interfacial Rashba magnetoresistance of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface

Interfacial Rashba magnetoresistance of the two-dimensional electron gas at the LaAlO3/SrTiO3... We report the angular dependence of magnetoresistance in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of the bulk spin Hall effect of the heavy metal layer. The observed magnetoresistance is in qualitative agreement with a theoretical model calculation including both Rashba spin-orbit coupling and an exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a non-negligible contribution to the spin Hall magnetoresistance, and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/nonmagnetic bilayers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Interfacial Rashba magnetoresistance of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface

Preview Only

Interfacial Rashba magnetoresistance of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface

Abstract

We report the angular dependence of magnetoresistance in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of the bulk spin Hall effect of the heavy metal layer. The observed magnetoresistance is in qualitative agreement with a theoretical model calculation including both Rashba spin-orbit coupling and an exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a non-negligible contribution to the spin Hall magnetoresistance, and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/nonmagnetic bilayers.
Loading next page...
 
/lp/aps_physical/interfacial-rashba-magnetoresistance-of-the-two-dimensional-electron-06bVuqL7lg
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.064401
Publisher site
See Article on Publisher Site

Abstract

We report the angular dependence of magnetoresistance in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of the bulk spin Hall effect of the heavy metal layer. The observed magnetoresistance is in qualitative agreement with a theoretical model calculation including both Rashba spin-orbit coupling and an exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a non-negligible contribution to the spin Hall magnetoresistance, and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/nonmagnetic bilayers.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial