Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Preview Only

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Abstract

Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field.
Loading next page...
 
/lp/aps_physical/interaction-sensitive-oscillations-of-dark-solitons-in-trapped-dipolar-f3zyMv0Ad0
Publisher
American Physical Society (APS)
Copyright
Copyright © Published by the American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.063622
Publisher site
See Article on Publisher Site

Abstract

Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off