Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Preview Only

Interaction-sensitive oscillations of dark solitons in trapped dipolar condensates

Abstract

Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field.
Loading next page...
 
/lp/aps_physical/interaction-sensitive-oscillations-of-dark-solitons-in-trapped-dipolar-f3zyMv0Ad0
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.063622
Publisher site
See Article on Publisher Site

Abstract

Thanks to their immense purity and controllability, dipolar Bose-Einstein condensates are an exemplar for studying fundamental nonlocal nonlinear physics. Here we show that a family of fundamental nonlinear waves—the dark solitons—are supported in trapped quasi-one-dimensional dipolar condensates and within reach of current experiments. Remarkably, the oscillation frequency of the soliton is strongly dependent on the atomic interactions, in stark contrast to the nondipolar case. Established analytical techniques are shown to not capture the simulated dynamics. These sensitive waves may act as mesoscopic probes of the underlying quantum matter field.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial