Instantons from perturbation theory

Instantons from perturbation theory In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Instantons from perturbation theory

Preview Only

Instantons from perturbation theory

Abstract

In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum.
Loading next page...
 
/lp/aps_physical/instantons-from-perturbation-theory-0dWk0EvGHb
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.021701
Publisher site
See Article on Publisher Site

Abstract

In quantum mechanics and quantum field theory perturbation theory generically requires the inclusion of extra contributions nonperturbative in the coupling, such as instantons, to reproduce exact results. We show how full nonperturbative results can be encoded in a suitable modified perturbative series in a class of quantum mechanical problems. We illustrate this explicitly in examples which are known to contain nonperturbative effects, such as the (supersymmetric) double-well potential, the pure anharmonic oscillator, and the perturbative expansion around a false vacuum.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial