Influence of carrier localization at the core/shell interface on the temperature dependence of the Stokes shift and the photoluminescence decay time in CdTe/CdS type-II quantum dots

Influence of carrier localization at the core/shell interface on the temperature dependence of... We have systematically investigated the temperature dependence of absorption, photoluminescence (PL), and PL decay profiles in CdTe-core and CdTe/CdS type-II quantum dots (QDs). In CdTe/CdS QDs, Stokes shifts and PL decay time become larger with an increase in temperature above 120 K, while those in CdTe-core QDs are almost independent of temperature. The unusual temperature dependence of Stokes shifts and PL decay time in CdTe/CdS QDs is understood by considering carrier localization at the core/shell interface at low temperatures and thermal-energy-assisted detrapping from localized-exciton to type-II exciton states at higher temperatures. Furthermore, a phenomenological rate-equation model is developed to explain the experimentally observed temperature-dependent PL decay time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Influence of carrier localization at the core/shell interface on the temperature dependence of the Stokes shift and the photoluminescence decay time in CdTe/CdS type-II quantum dots

Preview Only

Influence of carrier localization at the core/shell interface on the temperature dependence of the Stokes shift and the photoluminescence decay time in CdTe/CdS type-II quantum dots

Abstract

We have systematically investigated the temperature dependence of absorption, photoluminescence (PL), and PL decay profiles in CdTe-core and CdTe/CdS type-II quantum dots (QDs). In CdTe/CdS QDs, Stokes shifts and PL decay time become larger with an increase in temperature above 120 K, while those in CdTe-core QDs are almost independent of temperature. The unusual temperature dependence of Stokes shifts and PL decay time in CdTe/CdS QDs is understood by considering carrier localization at the core/shell interface at low temperatures and thermal-energy-assisted detrapping from localized-exciton to type-II exciton states at higher temperatures. Furthermore, a phenomenological rate-equation model is developed to explain the experimentally observed temperature-dependent PL decay time.
Loading next page...
 
/lp/aps_physical/influence-of-carrier-localization-at-the-core-shell-interface-on-the-5hdlTQ0Tzj
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035305
Publisher site
See Article on Publisher Site

Abstract

We have systematically investigated the temperature dependence of absorption, photoluminescence (PL), and PL decay profiles in CdTe-core and CdTe/CdS type-II quantum dots (QDs). In CdTe/CdS QDs, Stokes shifts and PL decay time become larger with an increase in temperature above 120 K, while those in CdTe-core QDs are almost independent of temperature. The unusual temperature dependence of Stokes shifts and PL decay time in CdTe/CdS QDs is understood by considering carrier localization at the core/shell interface at low temperatures and thermal-energy-assisted detrapping from localized-exciton to type-II exciton states at higher temperatures. Furthermore, a phenomenological rate-equation model is developed to explain the experimentally observed temperature-dependent PL decay time.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 18, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off