Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)2PF6

Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls... One-dimensional (1D) conductors such as Bechgaard and Fabre salts are a prototypal example of correlated systems where the phase diagram is controlled by sizable electron-electron repulsions. In deuterated (TMTTF)2PF6, where this interaction achieves charge localization at ambient pressure on donor stacks, magnetostructural coupling plays a decisive role to stabilize a spin-Peierls (SPs) ground state at TSP=13K. In this paper, we present the first inelastic neutron scattering investigation of SP magnetic excitations in organics. Our paper reveals the presence above TSP of sizable critical fluctuations leading to the formation of a pseudogap in the 1D antiferromagnetic (AF) S=1/2 magnetic excitation spectrum of the donor stack, concomitant with the local formation of singlet of paired spins into dimers below TSPMF≈40K. In addition, the inelastic neutron scattering investigation allows us also to probe the SP critical lattice dynamics and to show that at ambient pressure these dynamics are of relaxation or order-disorder type. Below TSP, our paper reveals the emergence of a two gap SP magnetic excitation spectrum towards a well-defined S=1 magnon mode and a continuum of two excitations, as theoretically predicted. Our measurements allow us to locate the ambient pressure SP phase of (TMTTF)2PF6 in the classical (adiabatic) limit close to the classical/quantum crossover line. Then we provide arguments suggesting that pressurized (TMTTF)2PF6 shifts to the quantum (antiadiabatic) SP gapped phase, which ends in a quantum critical point allowing the stabilization of an AF phase that competes with superconductivity at higher pressure. Finally, we propose that the magnetostructural coupling mechanism in the Fabre salts is caused by dimer charge/spin fluctuations driven by the coupling of donors with anions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)2PF6

Preview Only

Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)2PF6

Abstract

One-dimensional (1D) conductors such as Bechgaard and Fabre salts are a prototypal example of correlated systems where the phase diagram is controlled by sizable electron-electron repulsions. In deuterated (TMTTF)2PF6, where this interaction achieves charge localization at ambient pressure on donor stacks, magnetostructural coupling plays a decisive role to stabilize a spin-Peierls (SPs) ground state at TSP=13K. In this paper, we present the first inelastic neutron scattering investigation of SP magnetic excitations in organics. Our paper reveals the presence above TSP of sizable critical fluctuations leading to the formation of a pseudogap in the 1D antiferromagnetic (AF) S=1/2 magnetic excitation spectrum of the donor stack, concomitant with the local formation of singlet of paired spins into dimers below TSPMF≈40K. In addition, the inelastic neutron scattering investigation allows us also to probe the SP critical lattice dynamics and to show that at ambient pressure these dynamics are of relaxation or order-disorder type. Below TSP, our paper reveals the emergence of a two gap SP magnetic excitation spectrum towards a well-defined S=1 magnon mode and a continuum of two excitations, as theoretically predicted. Our measurements allow us to locate the ambient pressure SP phase of (TMTTF)2PF6 in the classical (adiabatic) limit close to the classical/quantum crossover line. Then we provide arguments suggesting that pressurized (TMTTF)2PF6 shifts to the quantum (antiadiabatic) SP gapped phase, which ends in a quantum critical point allowing the stabilization of an AF phase that competes with superconductivity at higher pressure. Finally, we propose that the magnetostructural coupling mechanism in the Fabre salts is caused by dimer charge/spin fluctuations driven by the coupling of donors with anions.
Loading next page...
 
/lp/aps_physical/inelastic-neutron-scattering-investigation-of-magnetostructural-PM0vp9Xsnb
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035127
Publisher site
See Article on Publisher Site

Abstract

One-dimensional (1D) conductors such as Bechgaard and Fabre salts are a prototypal example of correlated systems where the phase diagram is controlled by sizable electron-electron repulsions. In deuterated (TMTTF)2PF6, where this interaction achieves charge localization at ambient pressure on donor stacks, magnetostructural coupling plays a decisive role to stabilize a spin-Peierls (SPs) ground state at TSP=13K. In this paper, we present the first inelastic neutron scattering investigation of SP magnetic excitations in organics. Our paper reveals the presence above TSP of sizable critical fluctuations leading to the formation of a pseudogap in the 1D antiferromagnetic (AF) S=1/2 magnetic excitation spectrum of the donor stack, concomitant with the local formation of singlet of paired spins into dimers below TSPMF≈40K. In addition, the inelastic neutron scattering investigation allows us also to probe the SP critical lattice dynamics and to show that at ambient pressure these dynamics are of relaxation or order-disorder type. Below TSP, our paper reveals the emergence of a two gap SP magnetic excitation spectrum towards a well-defined S=1 magnon mode and a continuum of two excitations, as theoretically predicted. Our measurements allow us to locate the ambient pressure SP phase of (TMTTF)2PF6 in the classical (adiabatic) limit close to the classical/quantum crossover line. Then we provide arguments suggesting that pressurized (TMTTF)2PF6 shifts to the quantum (antiadiabatic) SP gapped phase, which ends in a quantum critical point allowing the stabilization of an AF phase that competes with superconductivity at higher pressure. Finally, we propose that the magnetostructural coupling mechanism in the Fabre salts is caused by dimer charge/spin fluctuations driven by the coupling of donors with anions.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off