Incompatible multiple consistent sets of histories and measures of quantumness

Incompatible multiple consistent sets of histories and measures of quantumness In the consistent histories approach to quantum theory probabilities are assigned to histories subject to a consistency condition of negligible interference. The approach has the feature that a given physical situation admits multiple sets of consistent histories that cannot in general be united into a single consistent set, leading to a number of counterintuitive or contrary properties if propositions from different consistent sets are combined indiscriminately. An alternative viewpoint is proposed in which multiple consistent sets are classified according to whether or not there exists any unifying probability for combinations of incompatible sets which replicates the consistent histories result when restricted to a single consistent set. A number of examples are exhibited in which this classification can be made, in some cases with the assistance of the Bell, Clauser-Horne-Shimony-Holt, or Leggett-Garg inequalities together with Fine's theorem. When a unifying probability exists logical deductions in different consistent sets can in fact be combined, an extension of the “single framework rule.” It is argued that this classification coincides with intuitive notions of the boundary between classical and quantum regimes and in particular, the absence of a unifying probability for certain combinations of consistent sets is regarded as a measure of the “quantumness” of the system. The proposed approach and results are closely related to recent work on the classification of quasiprobabilities and this connection is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Incompatible multiple consistent sets of histories and measures of quantumness

Preview Only

Incompatible multiple consistent sets of histories and measures of quantumness

Abstract

In the consistent histories approach to quantum theory probabilities are assigned to histories subject to a consistency condition of negligible interference. The approach has the feature that a given physical situation admits multiple sets of consistent histories that cannot in general be united into a single consistent set, leading to a number of counterintuitive or contrary properties if propositions from different consistent sets are combined indiscriminately. An alternative viewpoint is proposed in which multiple consistent sets are classified according to whether or not there exists any unifying probability for combinations of incompatible sets which replicates the consistent histories result when restricted to a single consistent set. A number of examples are exhibited in which this classification can be made, in some cases with the assistance of the Bell, Clauser-Horne-Shimony-Holt, or Leggett-Garg inequalities together with Fine's theorem. When a unifying probability exists logical deductions in different consistent sets can in fact be combined, an extension of the “single framework rule.” It is argued that this classification coincides with intuitive notions of the boundary between classical and quantum regimes and in particular, the absence of a unifying probability for certain combinations of consistent sets is regarded as a measure of the “quantumness” of the system. The proposed approach and results are closely related to recent work on the classification of quasiprobabilities and this connection is discussed.
Loading next page...
 
/lp/aps_physical/incompatible-multiple-consistent-sets-of-histories-and-measures-of-SoK1kYC1JU
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012123
Publisher site
See Article on Publisher Site

Abstract

In the consistent histories approach to quantum theory probabilities are assigned to histories subject to a consistency condition of negligible interference. The approach has the feature that a given physical situation admits multiple sets of consistent histories that cannot in general be united into a single consistent set, leading to a number of counterintuitive or contrary properties if propositions from different consistent sets are combined indiscriminately. An alternative viewpoint is proposed in which multiple consistent sets are classified according to whether or not there exists any unifying probability for combinations of incompatible sets which replicates the consistent histories result when restricted to a single consistent set. A number of examples are exhibited in which this classification can be made, in some cases with the assistance of the Bell, Clauser-Horne-Shimony-Holt, or Leggett-Garg inequalities together with Fine's theorem. When a unifying probability exists logical deductions in different consistent sets can in fact be combined, an extension of the “single framework rule.” It is argued that this classification coincides with intuitive notions of the boundary between classical and quantum regimes and in particular, the absence of a unifying probability for certain combinations of consistent sets is regarded as a measure of the “quantumness” of the system. The proposed approach and results are closely related to recent work on the classification of quasiprobabilities and this connection is discussed.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off