Impact of ferroelectric and superparaelectric nanoparticles on phase transitions and dynamics in nematic liquid crystals

Impact of ferroelectric and superparaelectric nanoparticles on phase transitions and dynamics in... Results of broadband dielectric spectroscopy (BDS) studies of pure liquid crystalline (4-pentyloxy-4-biphenylcarbonitryle) 5OCB and its nanocolloids with BaTiO3 nanoparticles (NPs) under varying pressure and temperature are presented. The notable impact of NPs on phase transitions and dynamics was found. Particularly strong impact on pretransitional behavior was observed for relatively low concentrations of NPs, which can be related to the NPs-induced disorder. There are also notable differences between pressure and temperature paths of studies for nanocomposites, absent for the pure LC compound. For instance, tests focused on the translational orientational decoupling via the fractional Debye-Stokes-Einstein relation yielded S=0.71 and S=0.3 for the temperature and pressure paths, respectively: S=1 is for the complete coupling. The possible theoretical frame of observed phenomena is also proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Impact of ferroelectric and superparaelectric nanoparticles on phase transitions and dynamics in nematic liquid crystals

Preview Only

Impact of ferroelectric and superparaelectric nanoparticles on phase transitions and dynamics in nematic liquid crystals

Abstract

Results of broadband dielectric spectroscopy (BDS) studies of pure liquid crystalline (4-pentyloxy-4-biphenylcarbonitryle) 5OCB and its nanocolloids with BaTiO3 nanoparticles (NPs) under varying pressure and temperature are presented. The notable impact of NPs on phase transitions and dynamics was found. Particularly strong impact on pretransitional behavior was observed for relatively low concentrations of NPs, which can be related to the NPs-induced disorder. There are also notable differences between pressure and temperature paths of studies for nanocomposites, absent for the pure LC compound. For instance, tests focused on the translational orientational decoupling via the fractional Debye-Stokes-Einstein relation yielded S=0.71 and S=0.3 for the temperature and pressure paths, respectively: S=1 is for the complete coupling. The possible theoretical frame of observed phenomena is also proposed.
Loading next page...
 
/lp/aps_physical/impact-of-ferroelectric-and-superparaelectric-nanoparticles-on-phase-PFCF4rp4c0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022705
Publisher site
See Article on Publisher Site

Abstract

Results of broadband dielectric spectroscopy (BDS) studies of pure liquid crystalline (4-pentyloxy-4-biphenylcarbonitryle) 5OCB and its nanocolloids with BaTiO3 nanoparticles (NPs) under varying pressure and temperature are presented. The notable impact of NPs on phase transitions and dynamics was found. Particularly strong impact on pretransitional behavior was observed for relatively low concentrations of NPs, which can be related to the NPs-induced disorder. There are also notable differences between pressure and temperature paths of studies for nanocomposites, absent for the pure LC compound. For instance, tests focused on the translational orientational decoupling via the fractional Debye-Stokes-Einstein relation yielded S=0.71 and S=0.3 for the temperature and pressure paths, respectively: S=1 is for the complete coupling. The possible theoretical frame of observed phenomena is also proposed.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off