Hybrid benchmarking of arbitrary quantum gates

Hybrid benchmarking of arbitrary quantum gates We present a protocol for interleaved randomized benchmarking of arbitrary quantum gates using Monte Carlo sampling of quantum states. It is generally applicable, including non-Clifford gates while preserving key advantages of randomized benchmarking such as error amplification as well as independence from state preparation and measurement errors. This property is crucial for implementations in many contemporary systems. Although the protocol scales exponentially in the number of qubits, it is superior to direct Monte Carlo sampling of the average gate fidelity in both the total number of experiments by orders of magnitude and savings in classical preprocessing, that are exponential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Hybrid benchmarking of arbitrary quantum gates

Preview Only

Hybrid benchmarking of arbitrary quantum gates

Abstract

We present a protocol for interleaved randomized benchmarking of arbitrary quantum gates using Monte Carlo sampling of quantum states. It is generally applicable, including non-Clifford gates while preserving key advantages of randomized benchmarking such as error amplification as well as independence from state preparation and measurement errors. This property is crucial for implementations in many contemporary systems. Although the protocol scales exponentially in the number of qubits, it is superior to direct Monte Carlo sampling of the average gate fidelity in both the total number of experiments by orders of magnitude and savings in classical preprocessing, that are exponential.
Loading next page...
 
/lp/aps_physical/hybrid-benchmarking-of-arbitrary-quantum-gates-PZVRP76UX3
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.95.062335
Publisher site
See Article on Publisher Site

Abstract

We present a protocol for interleaved randomized benchmarking of arbitrary quantum gates using Monte Carlo sampling of quantum states. It is generally applicable, including non-Clifford gates while preserving key advantages of randomized benchmarking such as error amplification as well as independence from state preparation and measurement errors. This property is crucial for implementations in many contemporary systems. Although the protocol scales exponentially in the number of qubits, it is superior to direct Monte Carlo sampling of the average gate fidelity in both the total number of experiments by orders of magnitude and savings in classical preprocessing, that are exponential.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jun 27, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off