Gravitational wave bursts from cosmic string cusps and pseudocusps

Gravitational wave bursts from cosmic string cusps and pseudocusps We study the relative contribution of cusps and pseudocusps, on cosmic (super)strings, to the emitted bursts of gravitational waves. The gravitational wave emission in the vicinity of highly relativistic points on the string follows, for a high enough frequency, a logarithmic decrease. The slope has been analytically found to be -4/3 for points reaching exactly the speed of light in the limit c=1. We investigate the variations of this high-frequency behavior with respect to the velocity of the points considered, for strings formed through a numerical simulation, and we then compute numerically the gravitational waves emitted. We find that for string points moving with velocities as far as 10-3 from the theoretical (relativistic) limit c=1, gravitational wave emission follows a behavior consistent with that of cusps, effectively increasing the number of cusps on a string. Indeed, depending on the velocity threshold chosen for such behavior, we show that the emitting part of the string worldsheet is enhanced by a factor O(103) with respect to the emission of cusps only. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Gravitational wave bursts from cosmic string cusps and pseudocusps

Preview Only

Gravitational wave bursts from cosmic string cusps and pseudocusps

Abstract

We study the relative contribution of cusps and pseudocusps, on cosmic (super)strings, to the emitted bursts of gravitational waves. The gravitational wave emission in the vicinity of highly relativistic points on the string follows, for a high enough frequency, a logarithmic decrease. The slope has been analytically found to be -4/3 for points reaching exactly the speed of light in the limit c=1. We investigate the variations of this high-frequency behavior with respect to the velocity of the points considered, for strings formed through a numerical simulation, and we then compute numerically the gravitational waves emitted. We find that for string points moving with velocities as far as 10-3 from the theoretical (relativistic) limit c=1, gravitational wave emission follows a behavior consistent with that of cusps, effectively increasing the number of cusps on a string. Indeed, depending on the velocity threshold chosen for such behavior, we show that the emitting part of the string worldsheet is enhanced by a factor O(103) with respect to the emission of cusps only.
Loading next page...
 
/lp/aps_physical/gravitational-wave-bursts-from-cosmic-string-cusps-and-pseudocusps-ycVgDnSsr7
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023533
Publisher site
See Article on Publisher Site

Abstract

We study the relative contribution of cusps and pseudocusps, on cosmic (super)strings, to the emitted bursts of gravitational waves. The gravitational wave emission in the vicinity of highly relativistic points on the string follows, for a high enough frequency, a logarithmic decrease. The slope has been analytically found to be -4/3 for points reaching exactly the speed of light in the limit c=1. We investigate the variations of this high-frequency behavior with respect to the velocity of the points considered, for strings formed through a numerical simulation, and we then compute numerically the gravitational waves emitted. We find that for string points moving with velocities as far as 10-3 from the theoretical (relativistic) limit c=1, gravitational wave emission follows a behavior consistent with that of cusps, effectively increasing the number of cusps on a string. Indeed, depending on the velocity threshold chosen for such behavior, we show that the emitting part of the string worldsheet is enhanced by a factor O(103) with respect to the emission of cusps only.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off