Gravitational domain walls and the dynamics of the gravitational constant G

Gravitational domain walls and the dynamics of the gravitational constant G From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a “G-wall.” The idea is implemented by introducing a gauge potential Aμνρ, and its conjugate D, which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G-wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G-wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G(D) which may be chosen so as to diminish the value of G towards the asymptote G=0. It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G-walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G-wall may be refracted or reflected. (iii) The various forces between two particles change when a G-wall is inserted in between them. (iv) G-walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Gravitational domain walls and the dynamics of the gravitational constant G

Preview Only

Gravitational domain walls and the dynamics of the gravitational constant G

Abstract

From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a “G-wall.” The idea is implemented by introducing a gauge potential Aμνρ, and its conjugate D, which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G-wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G-wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G(D) which may be chosen so as to diminish the value of G towards the asymptote G=0. It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G-walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G-wall may be refracted or reflected. (iii) The various forces between two particles change when a G-wall is inserted in between them. (iv) G-walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.
Loading next page...
 
/lp/aps_physical/gravitational-domain-walls-and-the-dynamics-of-the-gravitational-xn4SEPAsoQ
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.025013
Publisher site
See Article on Publisher Site

Abstract

From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a “G-wall.” The idea is implemented by introducing a gauge potential Aμνρ, and its conjugate D, which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G-wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G-wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G(D) which may be chosen so as to diminish the value of G towards the asymptote G=0. It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G-walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G-wall may be refracted or reflected. (iii) The various forces between two particles change when a G-wall is inserted in between them. (iv) G-walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial