Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics

Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and... We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics

Preview Only

Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics

Abstract

We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing.
Loading next page...
 
/lp/aps_physical/graphene-superlattices-in-strong-circularly-polarized-fields-chirality-owzauGO9a2
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.075409
Publisher site
See Article on Publisher Site

Abstract

We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial