Graph spectral characterization of the XY model on complex networks

Graph spectral characterization of the XY model on complex networks There is recent evidence that the XY spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work we present a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From this decomposition, we produce spatial power spectra, which summarize the activation of structural modes by the nonlinear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states are independent of the underlying network class and can thus be used as robust signatures for the macroscopic states. This work opens avenues to analyze and characterize dynamics on complex networks using temporal Graph Signal Analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Graph spectral characterization of the XY model on complex networks

Preview Only

Graph spectral characterization of the XY model on complex networks

Abstract

There is recent evidence that the XY spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work we present a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From this decomposition, we produce spatial power spectra, which summarize the activation of structural modes by the nonlinear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states are independent of the underlying network class and can thus be used as robust signatures for the macroscopic states. This work opens avenues to analyze and characterize dynamics on complex networks using temporal Graph Signal Analysis.
Loading next page...
 
/lp/aps_physical/graph-spectral-characterization-of-the-xy-model-on-complex-networks-dse202G60R
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012312
Publisher site
See Article on Publisher Site

Abstract

There is recent evidence that the XY spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work we present a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From this decomposition, we produce spatial power spectra, which summarize the activation of structural modes by the nonlinear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states are independent of the underlying network class and can thus be used as robust signatures for the macroscopic states. This work opens avenues to analyze and characterize dynamics on complex networks using temporal Graph Signal Analysis.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 11, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off