Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Golf-course and funnel energy landscapes: Protein folding concepts in martensites We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Physical Review E , Volume 95 (6) – Jun 26, 2017

Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Physical Review E , Volume 95 (6) – Jun 26, 2017

Abstract

We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.

Loading next page...
 
/lp/aps_physical/golf-course-and-funnel-energy-landscapes-protein-folding-concepts-in-Dzi7mdIrIb

References (5)

Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
DOI
10.1103/PhysRevE.95.063003
pmid
28709319
Publisher site
See Article on Publisher Site

Abstract

We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.