Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Golf-course and funnel energy landscapes: Protein folding concepts in martensites We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Preview Only

Golf-course and funnel energy landscapes: Protein folding concepts in martensites

Abstract

We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.
Loading next page...
 
/lp/aps_physical/golf-course-and-funnel-energy-landscapes-protein-folding-concepts-in-Dzi7mdIrIb
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.95.063003
Publisher site
See Article on Publisher Site

Abstract

We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jun 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off