Geometric valley Hall effect and valley filtering through a singular Berry flux

Geometric valley Hall effect and valley filtering through a singular Berry flux Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Geometric valley Hall effect and valley filtering through a singular Berry flux

Preview Only

Geometric valley Hall effect and valley filtering through a singular Berry flux

Abstract

Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.
Loading next page...
 
/lp/aps_physical/geometric-valley-hall-effect-and-valley-filtering-through-a-singular-3ipXKZAqOq
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045412
Publisher site
See Article on Publisher Site

Abstract

Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off