Generation of coherence via Gaussian measurements

Generation of coherence via Gaussian measurements We address measurement-based generation of quantum coherence in continuous variable systems. We consider Gaussian measurements performed on Gaussian states and focus on two scenarios: In the first one, we assume an initially correlated bipartite state shared by two parties and study how correlations may be exploited to remotely create quantum coherence via measurement back action. In particular, we focus on conditional states with zero first moments, so as to address coherence due to properties of the covariance matrix. We consider different classes of bipartite states with incoherent marginals and show that the larger the measurement squeezing, the larger the conditional coherence. Homodyne detection is thus the optimal Gaussian measurement to remotely generate coherence. We also show that for squeezed thermal states there exists a threshold value for the generated coherence which separates entangled and separable states at a fixed energy. Finally, we briefly discuss the tripartite case and the relationship between tripartite correlations and the conditional two-mode coherence. In the second scenario, we address the steady-state coherence of a system interacting with an environment which is continuously monitored. In particular, we discuss the dynamics of an optical parametric oscillator in order to investigate how the coherence of a Gaussian state may be increased by means of time-continuous Gaussian measurement on the interacting environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Generation of coherence via Gaussian measurements

Preview Only

Generation of coherence via Gaussian measurements

Abstract

We address measurement-based generation of quantum coherence in continuous variable systems. We consider Gaussian measurements performed on Gaussian states and focus on two scenarios: In the first one, we assume an initially correlated bipartite state shared by two parties and study how correlations may be exploited to remotely create quantum coherence via measurement back action. In particular, we focus on conditional states with zero first moments, so as to address coherence due to properties of the covariance matrix. We consider different classes of bipartite states with incoherent marginals and show that the larger the measurement squeezing, the larger the conditional coherence. Homodyne detection is thus the optimal Gaussian measurement to remotely generate coherence. We also show that for squeezed thermal states there exists a threshold value for the generated coherence which separates entangled and separable states at a fixed energy. Finally, we briefly discuss the tripartite case and the relationship between tripartite correlations and the conditional two-mode coherence. In the second scenario, we address the steady-state coherence of a system interacting with an environment which is continuously monitored. In particular, we discuss the dynamics of an optical parametric oscillator in order to investigate how the coherence of a Gaussian state may be increased by means of time-continuous Gaussian measurement on the interacting environment.
Loading next page...
 
/lp/aps_physical/generation-of-coherence-via-gaussian-measurements-0PYHoLibWh
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012337
Publisher site
See Article on Publisher Site

Abstract

We address measurement-based generation of quantum coherence in continuous variable systems. We consider Gaussian measurements performed on Gaussian states and focus on two scenarios: In the first one, we assume an initially correlated bipartite state shared by two parties and study how correlations may be exploited to remotely create quantum coherence via measurement back action. In particular, we focus on conditional states with zero first moments, so as to address coherence due to properties of the covariance matrix. We consider different classes of bipartite states with incoherent marginals and show that the larger the measurement squeezing, the larger the conditional coherence. Homodyne detection is thus the optimal Gaussian measurement to remotely generate coherence. We also show that for squeezed thermal states there exists a threshold value for the generated coherence which separates entangled and separable states at a fixed energy. Finally, we briefly discuss the tripartite case and the relationship between tripartite correlations and the conditional two-mode coherence. In the second scenario, we address the steady-state coherence of a system interacting with an environment which is continuously monitored. In particular, we discuss the dynamics of an optical parametric oscillator in order to investigate how the coherence of a Gaussian state may be increased by means of time-continuous Gaussian measurement on the interacting environment.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 31, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off