From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators

From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators Phase oscillator lattices subject to noise are one of the most fundamental systems in nonequilibrium physics. We have discovered a dynamical transition which has a significant impact on the synchronization dynamics in such lattices, as it leads to an explosive increase of the phase diffusion rate by orders of magnitude. Our analysis is based on the widely applicable Kuramoto-Sakaguchi model, with local couplings between oscillators. For one-dimensional lattices, we observe the universal evolution of the phase spread that is suggested by a connection to the theory of surface growth, as described by the Kardar-Parisi-Zhang (KPZ) model. Moreover, we are able to explain the dynamical transition both in one and two dimensions by connecting it to an apparent finite-time singularity in a related KPZ lattice model. Our findings have direct consequences for the frequency stability of coupled oscillator lattices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators

Preview Only

From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators

Abstract

Phase oscillator lattices subject to noise are one of the most fundamental systems in nonequilibrium physics. We have discovered a dynamical transition which has a significant impact on the synchronization dynamics in such lattices, as it leads to an explosive increase of the phase diffusion rate by orders of magnitude. Our analysis is based on the widely applicable Kuramoto-Sakaguchi model, with local couplings between oscillators. For one-dimensional lattices, we observe the universal evolution of the phase spread that is suggested by a connection to the theory of surface growth, as described by the Kardar-Parisi-Zhang (KPZ) model. Moreover, we are able to explain the dynamical transition both in one and two dimensions by connecting it to an apparent finite-time singularity in a related KPZ lattice model. Our findings have direct consequences for the frequency stability of coupled oscillator lattices.
Loading next page...
 
/lp/aps_physical/from-kardar-parisi-zhang-scaling-to-explosive-desynchronization-in-RebdGFibu7
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012220
Publisher site
See Article on Publisher Site

Abstract

Phase oscillator lattices subject to noise are one of the most fundamental systems in nonequilibrium physics. We have discovered a dynamical transition which has a significant impact on the synchronization dynamics in such lattices, as it leads to an explosive increase of the phase diffusion rate by orders of magnitude. Our analysis is based on the widely applicable Kuramoto-Sakaguchi model, with local couplings between oscillators. For one-dimensional lattices, we observe the universal evolution of the phase spread that is suggested by a connection to the theory of surface growth, as described by the Kardar-Parisi-Zhang (KPZ) model. Moreover, we are able to explain the dynamical transition both in one and two dimensions by connecting it to an apparent finite-time singularity in a related KPZ lattice model. Our findings have direct consequences for the frequency stability of coupled oscillator lattices.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off