Four-concurrence in the transverse XY spin-1/2 chain

Four-concurrence in the transverse XY spin-1/2 chain We analyze the entanglement measure C4 for specific mixed states in general and for the ground state of the transverse XY spin-1/2 chain. We find that its factorizing property for pure states does not easily extend to mixed states. For cases where the density matrix is a tensor product, C4 is definitely upper bounded by the product of the corresponding concurrences. In transverse XY chains, we find that for large distances this condition goes conform with the working hypotheses of a factorizing property of density matrices in this limit. Additionally, we find that C4 together with the genuine multipartite negativity makes it impossible to decide—at the present state of knowledge—which type of entanglement prevails in the system. In particular, this is true for all entanglement measures that detect SL-invariant genuine n-partite entanglement for different n. Further measures of SL-invariant genuine multipartite entanglement have to be considered here. C4 is, however, of the same order of magnitude as the genuine multipartite negativity in Phys. Rev. B 89, 134101 (2014)PRBMDO1098-012110.1103/PhysRevB.89.134101 and shows the same functional behavior, which we read as a hint towards the Greenberger-Horne-Zeilinger (GHZ) type of entanglement. Furthermore, we observe an interesting feature in the C4 values that resembles a destructive interference with the underlying concurrence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Four-concurrence in the transverse XY spin-1/2 chain

Preview Only

Four-concurrence in the transverse XY spin-1/2 chain

Abstract

We analyze the entanglement measure C4 for specific mixed states in general and for the ground state of the transverse XY spin-1/2 chain. We find that its factorizing property for pure states does not easily extend to mixed states. For cases where the density matrix is a tensor product, C4 is definitely upper bounded by the product of the corresponding concurrences. In transverse XY chains, we find that for large distances this condition goes conform with the working hypotheses of a factorizing property of density matrices in this limit. Additionally, we find that C4 together with the genuine multipartite negativity makes it impossible to decide—at the present state of knowledge—which type of entanglement prevails in the system. In particular, this is true for all entanglement measures that detect SL-invariant genuine n-partite entanglement for different n. Further measures of SL-invariant genuine multipartite entanglement have to be considered here. C4 is, however, of the same order of magnitude as the genuine multipartite negativity in Phys. Rev. B 89, 134101 (2014)PRBMDO1098-012110.1103/PhysRevB.89.134101 and shows the same functional behavior, which we read as a hint towards the Greenberger-Horne-Zeilinger (GHZ) type of entanglement. Furthermore, we observe an interesting feature in the C4 values that resembles a destructive interference with the underlying concurrence.
Loading next page...
 
/lp/aps_physical/four-concurrence-in-the-transverse-xy-spin-1-2-chain-m9wn26omPg
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012331
Publisher site
See Article on Publisher Site

Abstract

We analyze the entanglement measure C4 for specific mixed states in general and for the ground state of the transverse XY spin-1/2 chain. We find that its factorizing property for pure states does not easily extend to mixed states. For cases where the density matrix is a tensor product, C4 is definitely upper bounded by the product of the corresponding concurrences. In transverse XY chains, we find that for large distances this condition goes conform with the working hypotheses of a factorizing property of density matrices in this limit. Additionally, we find that C4 together with the genuine multipartite negativity makes it impossible to decide—at the present state of knowledge—which type of entanglement prevails in the system. In particular, this is true for all entanglement measures that detect SL-invariant genuine n-partite entanglement for different n. Further measures of SL-invariant genuine multipartite entanglement have to be considered here. C4 is, however, of the same order of magnitude as the genuine multipartite negativity in Phys. Rev. B 89, 134101 (2014)PRBMDO1098-012110.1103/PhysRevB.89.134101 and shows the same functional behavior, which we read as a hint towards the Greenberger-Horne-Zeilinger (GHZ) type of entanglement. Furthermore, we observe an interesting feature in the C4 values that resembles a destructive interference with the underlying concurrence.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 26, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off