Force distribution in a granular medium under dynamic loading

Force distribution in a granular medium under dynamic loading Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Force distribution in a granular medium under dynamic loading

Preview Only

Force distribution in a granular medium under dynamic loading

Abstract

Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading.
Loading next page...
 
/lp/aps_physical/force-distribution-in-a-granular-medium-under-dynamic-loading-Z90FeEZUmR
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012906
Publisher site
See Article on Publisher Site

Abstract

Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off