Force distribution in a granular medium under dynamic loading

Force distribution in a granular medium under dynamic loading Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Force distribution in a granular medium under dynamic loading

Preview Only

Force distribution in a granular medium under dynamic loading

Abstract

Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading.
Loading next page...
 
/lp/aps_physical/force-distribution-in-a-granular-medium-under-dynamic-loading-Z90FeEZUmR
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012906
Publisher site
See Article on Publisher Site

Abstract

Force distribution in a granular medium subjected to an impulse loading is investigated in experiment and computer simulations. An experimental technique is developed to measure forces acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete element method simulation also is performed under conditions mimicking those in experiment. Both theory and experiment display exponentially decaying maximum force distributions at the bottom of the sample in the range of large forces. In addition, the simulations also reveal exponential force distribution throughout the sample and uncover correlation properties of the interparticle forces during dynamic loading of the granular samples. Simulated time dependence of coordination number, orientational order parameter, correlation radius, and force distribution clearly demonstrates the nonequilibrium character of the deformation process in a granular medium under impulse loading.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial