Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II. This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Physical Review D , Volume 96 (4) – Aug 15, 2017

Abstract

This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method.

Loading next page...
 
/lp/aps_physical/fluctuations-in-quantum-mechanics-and-field-theories-from-a-new-8JbhygSU0i

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
DOI
10.1103/PhysRevD.96.045005
Publisher site
See Article on Publisher Site

Abstract

This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 15, 2017

There are no references for this article.