Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II. This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Preview Only

Fluctuations in quantum mechanics and field theories from a new version of semiclassical theory. II.

Abstract

This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method.
Loading next page...
 
/lp/aps_physical/fluctuations-in-quantum-mechanics-and-field-theories-from-a-new-8JbhygSU0i
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.045005
Publisher site
See Article on Publisher Site

Abstract

This is the second paper on the semiclassical approach based on the density matrix given by the Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93, 105039 (2016)]PRVDAQ2470-001010.1103/PhysRevD.93.105039 for a double-well potential. Here, we extend them for a number of quantum-mechanical problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively, starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like, iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential (nondegenerate minima) is also studied using the second method.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial