Fluctuation-induced first-order transition in Eu-based trillium lattices

Fluctuation-induced first-order transition in Eu-based trillium lattices Among spin arrangements prone to geometric frustration, the so-called trillium lattice has not been very intensively investigated. A few theoretical works show that it is at the border between a degenerate, an only partially ordered, and a fully ordered ground state. However, only few compounds with this structure have been studied, and there is presently no good example of a trillium lattice with an antiferromagnetic ground state and clear evidence for frustration effects. We present magnetic and specific heat measurements on two realizations of a trillium lattice of local spins, EuPtSi and EuPtGe. Both compounds exhibit a similar magnetic behavior, with Eu2+ moments ordering antiferromagnetically at TN=4.1 K (EuPtSi) and 3.3 K (EuPtGe), albeit retaining a considerable amount of entropy in strong magnetic fluctuations extending to temperatures well above TN. The magnetic entropy reaches only roughly half of Rln8 at TN. These fluctuations are presumably the source for the pronounced first-order character of the transition at TN and are likely due to magnetic frustration. Thus, EuPtSi and EuPtGe open a new door to experimental studies of frustration effects in the trillium lattice and provide a testing ground for theoretical predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Fluctuation-induced first-order transition in Eu-based trillium lattices

Preview Only

Fluctuation-induced first-order transition in Eu-based trillium lattices

Abstract

Among spin arrangements prone to geometric frustration, the so-called trillium lattice has not been very intensively investigated. A few theoretical works show that it is at the border between a degenerate, an only partially ordered, and a fully ordered ground state. However, only few compounds with this structure have been studied, and there is presently no good example of a trillium lattice with an antiferromagnetic ground state and clear evidence for frustration effects. We present magnetic and specific heat measurements on two realizations of a trillium lattice of local spins, EuPtSi and EuPtGe. Both compounds exhibit a similar magnetic behavior, with Eu2+ moments ordering antiferromagnetically at TN=4.1 K (EuPtSi) and 3.3 K (EuPtGe), albeit retaining a considerable amount of entropy in strong magnetic fluctuations extending to temperatures well above TN. The magnetic entropy reaches only roughly half of Rln8 at TN. These fluctuations are presumably the source for the pronounced first-order character of the transition at TN and are likely due to magnetic frustration. Thus, EuPtSi and EuPtGe open a new door to experimental studies of frustration effects in the trillium lattice and provide a testing ground for theoretical predictions.
Loading next page...
 
/lp/aps_physical/fluctuation-induced-first-order-transition-in-eu-based-trillium-uEso3kCRfc
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014401
Publisher site
See Article on Publisher Site

Abstract

Among spin arrangements prone to geometric frustration, the so-called trillium lattice has not been very intensively investigated. A few theoretical works show that it is at the border between a degenerate, an only partially ordered, and a fully ordered ground state. However, only few compounds with this structure have been studied, and there is presently no good example of a trillium lattice with an antiferromagnetic ground state and clear evidence for frustration effects. We present magnetic and specific heat measurements on two realizations of a trillium lattice of local spins, EuPtSi and EuPtGe. Both compounds exhibit a similar magnetic behavior, with Eu2+ moments ordering antiferromagnetically at TN=4.1 K (EuPtSi) and 3.3 K (EuPtGe), albeit retaining a considerable amount of entropy in strong magnetic fluctuations extending to temperatures well above TN. The magnetic entropy reaches only roughly half of Rln8 at TN. These fluctuations are presumably the source for the pronounced first-order character of the transition at TN and are likely due to magnetic frustration. Thus, EuPtSi and EuPtGe open a new door to experimental studies of frustration effects in the trillium lattice and provide a testing ground for theoretical predictions.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial