Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge

Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate... We study the coupled drainage mechanisms of a propagating viscous gravity current that leaks fluid through a permeable substrate and a fixed edge. Using both theoretical analyses and numerical simulations, we investigate the time evolution of the profile shape and the amount of fluid loss through each of the drainage mechanisms. For the case of a finite-volume release, asymptotic solutions are provided to describe the dynamics of the profile shapes. Specifically, for the case of buoyancy-driven drainage with finite-volume release, an early-time self-similar solution is obtained to describe the profile evolution and a late-time self-similar solution is approached in the limit of pure edge drainage. For the case of constant fluid injection, numerical and analytical solutions are given to describe the time evolution and the steady-state profile shapes, as well as the partition of the fluid loss through each mechanism. We also briefly discuss the practical implications of the theoretical predictions to the CO2 sequestration and leakage problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Fluids American Physical Society (APS)

Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge

Preview Only

Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge

Abstract

We study the coupled drainage mechanisms of a propagating viscous gravity current that leaks fluid through a permeable substrate and a fixed edge. Using both theoretical analyses and numerical simulations, we investigate the time evolution of the profile shape and the amount of fluid loss through each of the drainage mechanisms. For the case of a finite-volume release, asymptotic solutions are provided to describe the dynamics of the profile shapes. Specifically, for the case of buoyancy-driven drainage with finite-volume release, an early-time self-similar solution is obtained to describe the profile evolution and a late-time self-similar solution is approached in the limit of pure edge drainage. For the case of constant fluid injection, numerical and analytical solutions are given to describe the time evolution and the steady-state profile shapes, as well as the partition of the fluid loss through each mechanism. We also briefly discuss the practical implications of the theoretical predictions to the CO2 sequestration and leakage problems.
Loading next page...
 
/lp/aps_physical/flow-of-a-gravity-current-in-a-porous-medium-accounting-for-drainage-St2X2JIROa
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
eISSN
2469-990X
D.O.I.
10.1103/PhysRevFluids.2.074101
Publisher site
See Article on Publisher Site

Abstract

We study the coupled drainage mechanisms of a propagating viscous gravity current that leaks fluid through a permeable substrate and a fixed edge. Using both theoretical analyses and numerical simulations, we investigate the time evolution of the profile shape and the amount of fluid loss through each of the drainage mechanisms. For the case of a finite-volume release, asymptotic solutions are provided to describe the dynamics of the profile shapes. Specifically, for the case of buoyancy-driven drainage with finite-volume release, an early-time self-similar solution is obtained to describe the profile evolution and a late-time self-similar solution is approached in the limit of pure edge drainage. For the case of constant fluid injection, numerical and analytical solutions are given to describe the time evolution and the steady-state profile shapes, as well as the partition of the fluid loss through each mechanism. We also briefly discuss the practical implications of the theoretical predictions to the CO2 sequestration and leakage problems.

Journal

Physical Review FluidsAmerican Physical Society (APS)

Published: Jul 13, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial