Finite-time generalization of the thermodynamic uncertainty relation

Finite-time generalization of the thermodynamic uncertainty relation For fluctuating currents in nonequilibrium steady states, the recently discovered thermodynamic uncertainty relation expresses a fundamental relation between their variance and the overall entropic cost associated with the driving. We show that this relation holds not only for the long-time limit of fluctuations, as described by large deviation theory, but also for fluctuations on arbitrary finite time scales. This generalization facilitates applying the thermodynamic uncertainty relation to single molecule experiments, for which infinite time scales are not accessible. Importantly, often this finite-time variant of the relation allows inferring a bound on the entropy production that is even stronger than the one obtained from the long-time limit. We illustrate the relation for the fluctuating work that is performed by a stochastically switching laser tweezer on a trapped colloidal particle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Finite-time generalization of the thermodynamic uncertainty relation

Preview Only

Finite-time generalization of the thermodynamic uncertainty relation

Abstract

For fluctuating currents in nonequilibrium steady states, the recently discovered thermodynamic uncertainty relation expresses a fundamental relation between their variance and the overall entropic cost associated with the driving. We show that this relation holds not only for the long-time limit of fluctuations, as described by large deviation theory, but also for fluctuations on arbitrary finite time scales. This generalization facilitates applying the thermodynamic uncertainty relation to single molecule experiments, for which infinite time scales are not accessible. Importantly, often this finite-time variant of the relation allows inferring a bound on the entropy production that is even stronger than the one obtained from the long-time limit. We illustrate the relation for the fluctuating work that is performed by a stochastically switching laser tweezer on a trapped colloidal particle.
Loading next page...
 
/lp/aps_physical/finite-time-generalization-of-the-thermodynamic-uncertainty-relation-s0QlYPYTz7
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012101
Publisher site
See Article on Publisher Site

Abstract

For fluctuating currents in nonequilibrium steady states, the recently discovered thermodynamic uncertainty relation expresses a fundamental relation between their variance and the overall entropic cost associated with the driving. We show that this relation holds not only for the long-time limit of fluctuations, as described by large deviation theory, but also for fluctuations on arbitrary finite time scales. This generalization facilitates applying the thermodynamic uncertainty relation to single molecule experiments, for which infinite time scales are not accessible. Importantly, often this finite-time variant of the relation allows inferring a bound on the entropy production that is even stronger than the one obtained from the long-time limit. We illustrate the relation for the fluctuating work that is performed by a stochastically switching laser tweezer on a trapped colloidal particle.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial