Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation

Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic... We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [Fe(pyrazine)(Ni(CN)4)] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (<10 nm) in both spin states. This stiffening may be due to the elastic surface stress exerted by the external environment. An evidence of the influence of the host matrix on the vibrational properties of the nanoparticles is also highlighted through the matrix dependence of the sound velocity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation

Preview Only

Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation

Abstract

We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [Fe(pyrazine)(Ni(CN)4)] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (<10 nm) in both spin states. This stiffening may be due to the elastic surface stress exerted by the external environment. An evidence of the influence of the host matrix on the vibrational properties of the nanoparticles is also highlighted through the matrix dependence of the sound velocity.
Loading next page...
 
/lp/aps_physical/finite-size-effects-on-the-lattice-dynamics-in-spin-crossover-YI1o99iNV4
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035426
Publisher site
See Article on Publisher Site

Abstract

We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [Fe(pyrazine)(Ni(CN)4)] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (<10 nm) in both spin states. This stiffening may be due to the elastic surface stress exerted by the external environment. An evidence of the influence of the host matrix on the vibrational properties of the nanoparticles is also highlighted through the matrix dependence of the sound velocity.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 20, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off