Field dependence of antiferromagnetic domain switching in epitaxial Fe/CoO/MgO(001) systems

Field dependence of antiferromagnetic domain switching in epitaxial Fe/CoO/MgO(001) systems Utilizing the magneto-optic Kerr effect and Kerr microscopy measurements, we investigated the antiferromagnetic (AFM) domain switching process at different magnetic fields in a single-crystalline Fe/CoO bilayer grown on MgO(001) substrate. In spite of the zero-net magnetic moment in the CoO layer, we find that the activation energy barrier of CoO AFM domain switching decreased at larger magnetic field. To separate the different behaviors of domain nucleation and domain wall motion during the CoO spin switching process, a new analytical method was developed. Using this method, we found that the CoO domain nucleation energy barrier exhibited a jump at a critical magnetic field while the CoO domain wall motion experienced only a tiny energy barrier variation. The field-dependent behaviors of the energy barriers were attributed to the formation of a spiral domain wall in the Fe layer during its magnetization reversal and this was supported by micromagnetic simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Field dependence of antiferromagnetic domain switching in epitaxial Fe/CoO/MgO(001) systems

Preview Only

Field dependence of antiferromagnetic domain switching in epitaxial Fe/CoO/MgO(001) systems

Abstract

Utilizing the magneto-optic Kerr effect and Kerr microscopy measurements, we investigated the antiferromagnetic (AFM) domain switching process at different magnetic fields in a single-crystalline Fe/CoO bilayer grown on MgO(001) substrate. In spite of the zero-net magnetic moment in the CoO layer, we find that the activation energy barrier of CoO AFM domain switching decreased at larger magnetic field. To separate the different behaviors of domain nucleation and domain wall motion during the CoO spin switching process, a new analytical method was developed. Using this method, we found that the CoO domain nucleation energy barrier exhibited a jump at a critical magnetic field while the CoO domain wall motion experienced only a tiny energy barrier variation. The field-dependent behaviors of the energy barriers were attributed to the formation of a spiral domain wall in the Fe layer during its magnetization reversal and this was supported by micromagnetic simulations.
Loading next page...
 
/lp/aps_physical/field-dependence-of-antiferromagnetic-domain-switching-in-epitaxial-fe-2s6ESm5tId
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024420
Publisher site
See Article on Publisher Site

Abstract

Utilizing the magneto-optic Kerr effect and Kerr microscopy measurements, we investigated the antiferromagnetic (AFM) domain switching process at different magnetic fields in a single-crystalline Fe/CoO bilayer grown on MgO(001) substrate. In spite of the zero-net magnetic moment in the CoO layer, we find that the activation energy barrier of CoO AFM domain switching decreased at larger magnetic field. To separate the different behaviors of domain nucleation and domain wall motion during the CoO spin switching process, a new analytical method was developed. Using this method, we found that the CoO domain nucleation energy barrier exhibited a jump at a critical magnetic field while the CoO domain wall motion experienced only a tiny energy barrier variation. The field-dependent behaviors of the energy barriers were attributed to the formation of a spiral domain wall in the Fe layer during its magnetization reversal and this was supported by micromagnetic simulations.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off