Fermionization and Mott-insulator formation in fermion trimers loaded in one-dimensional optical lattices

Fermionization and Mott-insulator formation in fermion trimers loaded in one-dimensional optical... The behavior of small clusters of one spin-up and two spin-down fermions with unlike-spin repulsive interactions in one-dimensional optical lattices was calculated using a diffusion Monte Carlo technique. We considered also a harmonic potential in the longitudinal direction to make our system resemble the standard experimental setups. When the interparticle repulsion is strong enough, the onset of fermionization is observed irrespective of the optical lattice parameters considered, in line with previous results for pure harmonic confinement. However, fermionization can also be seen even for small interparticle couplings if the optical potential is deep enough. In addition, for certain values of the wavelengths and the potential depths defining the lattice, Mott insulators in the fermionization limit with only three atoms were found. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Fermionization and Mott-insulator formation in fermion trimers loaded in one-dimensional optical lattices

Preview Only

Fermionization and Mott-insulator formation in fermion trimers loaded in one-dimensional optical lattices

Abstract

The behavior of small clusters of one spin-up and two spin-down fermions with unlike-spin repulsive interactions in one-dimensional optical lattices was calculated using a diffusion Monte Carlo technique. We considered also a harmonic potential in the longitudinal direction to make our system resemble the standard experimental setups. When the interparticle repulsion is strong enough, the onset of fermionization is observed irrespective of the optical lattice parameters considered, in line with previous results for pure harmonic confinement. However, fermionization can also be seen even for small interparticle couplings if the optical potential is deep enough. In addition, for certain values of the wavelengths and the potential depths defining the lattice, Mott insulators in the fermionization limit with only three atoms were found.
Loading next page...
 
/lp/aps_physical/fermionization-and-mott-insulator-formation-in-fermion-trimers-loaded-s08vn9Rrd1
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013614
Publisher site
See Article on Publisher Site

Abstract

The behavior of small clusters of one spin-up and two spin-down fermions with unlike-spin repulsive interactions in one-dimensional optical lattices was calculated using a diffusion Monte Carlo technique. We considered also a harmonic potential in the longitudinal direction to make our system resemble the standard experimental setups. When the interparticle repulsion is strong enough, the onset of fermionization is observed irrespective of the optical lattice parameters considered, in line with previous results for pure harmonic confinement. However, fermionization can also be seen even for small interparticle couplings if the optical potential is deep enough. In addition, for certain values of the wavelengths and the potential depths defining the lattice, Mott insulators in the fermionization limit with only three atoms were found.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 12, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off