Exciton-phonon dynamics on complex networks: Comparison between a perturbative approach and exact calculations

Exciton-phonon dynamics on complex networks: Comparison between a perturbative approach and exact... A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon dynamics in complex networks. This method, called PT*, is compared to exact calculations based on the numerical diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy of PT* depends on the nature of the network, and three different situations were identified. For most graphs, PT* yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network, PT* reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete graph, PT* breaks down. These different behaviors originate in the interplay between the degenerate nature of the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established to determine whether or not PT* is relevant. When it succeeds, our study shows the undeniable advantage of PT* in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to small-sized networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Exciton-phonon dynamics on complex networks: Comparison between a perturbative approach and exact calculations

Preview Only

Exciton-phonon dynamics on complex networks: Comparison between a perturbative approach and exact calculations

Abstract

A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon dynamics in complex networks. This method, called PT*, is compared to exact calculations based on the numerical diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy of PT* depends on the nature of the network, and three different situations were identified. For most graphs, PT* yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network, PT* reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete graph, PT* breaks down. These different behaviors originate in the interplay between the degenerate nature of the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established to determine whether or not PT* is relevant. When it succeeds, our study shows the undeniable advantage of PT* in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to small-sized networks.
Loading next page...
 
/lp/aps_physical/exciton-phonon-dynamics-on-complex-networks-comparison-between-a-GjKmhIB9ji
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022304
Publisher site
See Article on Publisher Site

Abstract

A method combining perturbation theory with a simplifying ansatz is used to describe the exciton-phonon dynamics in complex networks. This method, called PT*, is compared to exact calculations based on the numerical diagonalization of the exciton-phonon Hamiltonian for eight small-sized networks. It is shown that the accuracy of PT* depends on the nature of the network, and three different situations were identified. For most graphs, PT* yields a very accurate description of the dynamics. By contrast, for the Wheel graph and the Apollonian network, PT* reproduces the dynamics only when the exciton occupies a specific initial state. Finally, for the complete graph, PT* breaks down. These different behaviors originate in the interplay between the degenerate nature of the excitonic energy spectrum and the strength of the exciton-phonon interaction so that a criterion is established to determine whether or not PT* is relevant. When it succeeds, our study shows the undeniable advantage of PT* in that it allows us to perform very fast simulations when compared to exact calculations that are restricted to small-sized networks.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off