Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse

Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse We report the experimental observation of anomalies appearing in the reflection of intense p-polarized 100-femtosecond (fs) laser pulses at a nonmetallic material surface with a grating structure. The reflectivity was measured in air as a function of the angle of incidence at a Si grating. The results have exhibited an abrupt decrease to create a sharp dip at a specific incident angle of ∼24∘, where the grating surface was deeply ablated along the edge of the grooves. Similar to the so-called Wood's anomalies, the observed angle-dependent reflectivity provides direct evidence that surface plasmon polaritons (SPPs) can resonantly be excited at the interface between air and the nonmetallic material surface, as the intense fs laser pulse produces a high density of free electrons to form a metal-like layer on the Si grating surface. Calculation for a model target reproduces well the experimental results to confirm the excitation of SPPs on the Si grating, demonstrating the generation of enhanced near fields for the periodic ablation of a target surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse

Preview Only

Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse

Abstract

We report the experimental observation of anomalies appearing in the reflection of intense p-polarized 100-femtosecond (fs) laser pulses at a nonmetallic material surface with a grating structure. The reflectivity was measured in air as a function of the angle of incidence at a Si grating. The results have exhibited an abrupt decrease to create a sharp dip at a specific incident angle of ∼24∘, where the grating surface was deeply ablated along the edge of the grooves. Similar to the so-called Wood's anomalies, the observed angle-dependent reflectivity provides direct evidence that surface plasmon polaritons (SPPs) can resonantly be excited at the interface between air and the nonmetallic material surface, as the intense fs laser pulse produces a high density of free electrons to form a metal-like layer on the Si grating surface. Calculation for a model target reproduces well the experimental results to confirm the excitation of SPPs on the Si grating, demonstrating the generation of enhanced near fields for the periodic ablation of a target surface.
Loading next page...
 
/lp/aps_physical/excitation-of-surface-plasmon-polaritons-on-silicon-with-an-intense-G20xu41ynB
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045122
Publisher site
See Article on Publisher Site

Abstract

We report the experimental observation of anomalies appearing in the reflection of intense p-polarized 100-femtosecond (fs) laser pulses at a nonmetallic material surface with a grating structure. The reflectivity was measured in air as a function of the angle of incidence at a Si grating. The results have exhibited an abrupt decrease to create a sharp dip at a specific incident angle of ∼24∘, where the grating surface was deeply ablated along the edge of the grooves. Similar to the so-called Wood's anomalies, the observed angle-dependent reflectivity provides direct evidence that surface plasmon polaritons (SPPs) can resonantly be excited at the interface between air and the nonmetallic material surface, as the intense fs laser pulse produces a high density of free electrons to form a metal-like layer on the Si grating surface. Calculation for a model target reproduces well the experimental results to confirm the excitation of SPPs on the Si grating, demonstrating the generation of enhanced near fields for the periodic ablation of a target surface.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 17, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial