Excesses of cosmic ray spectra from a single nearby source

Excesses of cosmic ray spectra from a single nearby source Growing evidence reveals universal hardening on various cosmic ray spectra, e.g., proton, positron, as well as antiproton fractions. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays (p, e+) are produced through the collisions between the primary cosmic-ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of a large number of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary (p, e-) and secondary (e+, p¯/p) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of the proton is consistent with the observations if the local source is relatively young and lying at the anti-Galactic center direction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Excesses of cosmic ray spectra from a single nearby source

Preview Only

Excesses of cosmic ray spectra from a single nearby source

Abstract

Growing evidence reveals universal hardening on various cosmic ray spectra, e.g., proton, positron, as well as antiproton fractions. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays (p, e+) are produced through the collisions between the primary cosmic-ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of a large number of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary (p, e-) and secondary (e+, p¯/p) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of the proton is consistent with the observations if the local source is relatively young and lying at the anti-Galactic center direction.
Loading next page...
 
/lp/aps_physical/excesses-of-cosmic-ray-spectra-from-a-single-nearby-source-m6gUZ1h0kj
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.023006
Publisher site
See Article on Publisher Site

Abstract

Growing evidence reveals universal hardening on various cosmic ray spectra, e.g., proton, positron, as well as antiproton fractions. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays (p, e+) are produced through the collisions between the primary cosmic-ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of a large number of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary (p, e-) and secondary (e+, p¯/p) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of the proton is consistent with the observations if the local source is relatively young and lying at the anti-Galactic center direction.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off