Examination of the forces controlling dust dispersion by shock waves

Examination of the forces controlling dust dispersion by shock waves The interaction between a shock wave and a thin layer of inert dust is studied by solving unsteady, multidimensional Navier-Stokes equations representing the interactions between a compressible gas and incompressible particles. The system studied consists of a layer of densely packed limestone dust containing particles of uniform diameter (40 μm) that interact with a shock of strength Ms=1.4. Particle dispersion is investigated by comparing vertical particle accelerations due to Archimedes, gravitational, intergranular, and aerodynamic drag and lift forces. The simulations show that the shock produces two dust regions: a compacted layer and a dispersed region. The layer compaction, which increases the intergranular particle stress, is produced by drag and Archimedes forces. The dispersed dust is produced by forces that change in time as the shock passes. Initially, the dispersion is caused by intergranular forces. Later it is driven by a tradeoff between lift and drag forces. Eventually, drag forces dominate. Comparisons of the computations to experimental shock-tube data reproduced the observed initial growth of the dispersed dust and later leveled off. Particle agglomeration in the experiments made it difficult to determine a true particle size experimentally, although the computations for 40-μm particles explain the experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Fluids American Physical Society (APS)

Examination of the forces controlling dust dispersion by shock waves

Preview Only

Examination of the forces controlling dust dispersion by shock waves

Abstract

The interaction between a shock wave and a thin layer of inert dust is studied by solving unsteady, multidimensional Navier-Stokes equations representing the interactions between a compressible gas and incompressible particles. The system studied consists of a layer of densely packed limestone dust containing particles of uniform diameter (40 μm) that interact with a shock of strength Ms=1.4. Particle dispersion is investigated by comparing vertical particle accelerations due to Archimedes, gravitational, intergranular, and aerodynamic drag and lift forces. The simulations show that the shock produces two dust regions: a compacted layer and a dispersed region. The layer compaction, which increases the intergranular particle stress, is produced by drag and Archimedes forces. The dispersed dust is produced by forces that change in time as the shock passes. Initially, the dispersion is caused by intergranular forces. Later it is driven by a tradeoff between lift and drag forces. Eventually, drag forces dominate. Comparisons of the computations to experimental shock-tube data reproduced the observed initial growth of the dispersed dust and later leveled off. Particle agglomeration in the experiments made it difficult to determine a true particle size experimentally, although the computations for 40-μm particles explain the experimental data.
Loading next page...
 
/lp/aps_physical/examination-of-the-forces-controlling-dust-dispersion-by-shock-waves-at8jN4vK03
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
eISSN
2469-990X
D.O.I.
10.1103/PhysRevFluids.2.074304
Publisher site
See Article on Publisher Site

Abstract

The interaction between a shock wave and a thin layer of inert dust is studied by solving unsteady, multidimensional Navier-Stokes equations representing the interactions between a compressible gas and incompressible particles. The system studied consists of a layer of densely packed limestone dust containing particles of uniform diameter (40 μm) that interact with a shock of strength Ms=1.4. Particle dispersion is investigated by comparing vertical particle accelerations due to Archimedes, gravitational, intergranular, and aerodynamic drag and lift forces. The simulations show that the shock produces two dust regions: a compacted layer and a dispersed region. The layer compaction, which increases the intergranular particle stress, is produced by drag and Archimedes forces. The dispersed dust is produced by forces that change in time as the shock passes. Initially, the dispersion is caused by intergranular forces. Later it is driven by a tradeoff between lift and drag forces. Eventually, drag forces dominate. Comparisons of the computations to experimental shock-tube data reproduced the observed initial growth of the dispersed dust and later leveled off. Particle agglomeration in the experiments made it difficult to determine a true particle size experimentally, although the computations for 40-μm particles explain the experimental data.

Journal

Physical Review FluidsAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off