Exact solution of the isotropic majority-vote model on complete graphs

Exact solution of the isotropic majority-vote model on complete graphs The isotropic majority-vote (MV) model, which, apart from the one-dimensional case, is thought to be nonequilibrium and violating the detailed balance condition. We show that this is not true when the model is defined on a complete graph. In the stationary regime, the MV model on a fully connected graph fulfills the detailed balance and is equivalent to the modified Ehrenfest urn model. Using the master equation approach, we derive the exact expression for the probability distribution of finding the system in a given spin configuration. We show that it only depends on the absolute value of magnetization. Our theoretical predictions are validated by numerical simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Exact solution of the isotropic majority-vote model on complete graphs

Preview Only

Exact solution of the isotropic majority-vote model on complete graphs

Abstract

The isotropic majority-vote (MV) model, which, apart from the one-dimensional case, is thought to be nonequilibrium and violating the detailed balance condition. We show that this is not true when the model is defined on a complete graph. In the stationary regime, the MV model on a fully connected graph fulfills the detailed balance and is equivalent to the modified Ehrenfest urn model. Using the master equation approach, we derive the exact expression for the probability distribution of finding the system in a given spin configuration. We show that it only depends on the absolute value of magnetization. Our theoretical predictions are validated by numerical simulations.
Loading next page...
 
/lp/aps_physical/exact-solution-of-the-isotropic-majority-vote-model-on-complete-graphs-4cWKXVhIdP
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012304
Publisher site
See Article on Publisher Site

Abstract

The isotropic majority-vote (MV) model, which, apart from the one-dimensional case, is thought to be nonequilibrium and violating the detailed balance condition. We show that this is not true when the model is defined on a complete graph. In the stationary regime, the MV model on a fully connected graph fulfills the detailed balance and is equivalent to the modified Ehrenfest urn model. Using the master equation approach, we derive the exact expression for the probability distribution of finding the system in a given spin configuration. We show that it only depends on the absolute value of magnetization. Our theoretical predictions are validated by numerical simulations.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off