Evolutions of Gowdy, Brill, and Teukolsky initial data on a smooth lattice

Evolutions of Gowdy, Brill, and Teukolsky initial data on a smooth lattice Numerical results, based on a lattice method for computational general relativity, will be presented for Cauchy evolution of initial data for the Brill, Teukolsky and polarized Gowdy spacetimes. The simple objective of this paper is to demonstrate that the lattice method can, at least for these spacetimes, match results obtained from contemporary methods. Some of the issues addressed in this paper include the handling of axisymmetric instabilities (in the Brill space-time) and an implementation of a Sommerfeld radiation condition for the Brill and Teukolsky spacetimes. It will be shown that the lattice method performs particularly well in regard to the passage of the waves through the outer boundary. Questions concerning multiple black holes, mesh refinement and long term stability will not be discussed here but may form the basis of future work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Evolutions of Gowdy, Brill, and Teukolsky initial data on a smooth lattice

Preview Only

Evolutions of Gowdy, Brill, and Teukolsky initial data on a smooth lattice

Abstract

Numerical results, based on a lattice method for computational general relativity, will be presented for Cauchy evolution of initial data for the Brill, Teukolsky and polarized Gowdy spacetimes. The simple objective of this paper is to demonstrate that the lattice method can, at least for these spacetimes, match results obtained from contemporary methods. Some of the issues addressed in this paper include the handling of axisymmetric instabilities (in the Brill space-time) and an implementation of a Sommerfeld radiation condition for the Brill and Teukolsky spacetimes. It will be shown that the lattice method performs particularly well in regard to the passage of the waves through the outer boundary. Questions concerning multiple black holes, mesh refinement and long term stability will not be discussed here but may form the basis of future work.
Loading next page...
 
/lp/aps_physical/evolutions-of-gowdy-brill-and-teukolsky-initial-data-on-a-smooth-QFV3MKrSfh
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.024037
Publisher site
See Article on Publisher Site

Abstract

Numerical results, based on a lattice method for computational general relativity, will be presented for Cauchy evolution of initial data for the Brill, Teukolsky and polarized Gowdy spacetimes. The simple objective of this paper is to demonstrate that the lattice method can, at least for these spacetimes, match results obtained from contemporary methods. Some of the issues addressed in this paper include the handling of axisymmetric instabilities (in the Brill space-time) and an implementation of a Sommerfeld radiation condition for the Brill and Teukolsky spacetimes. It will be shown that the lattice method performs particularly well in regard to the passage of the waves through the outer boundary. Questions concerning multiple black holes, mesh refinement and long term stability will not be discussed here but may form the basis of future work.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial