Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers

Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Applied American Physical Society (APS)

Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers

Abstract

Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges.
Loading next page...
 
/lp/aps_physical/epsilon-near-zero-substrate-engineering-for-ultrathin-film-perfect-0vT7SEOqfi
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
eISSN
2331-7019
D.O.I.
10.1103/PhysRevApplied.8.014009
Publisher site
See Article on Publisher Site

Abstract

Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges.

Journal

Physical Review AppliedAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off