Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers

Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Applied American Physical Society (APS)

Epsilon-Near-Zero Substrate Engineering for Ultrathin-Film Perfect Absorbers

Abstract

Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges.
Loading next page...
 
/lp/aps_physical/epsilon-near-zero-substrate-engineering-for-ultrathin-film-perfect-0vT7SEOqfi
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
eISSN
2331-7019
D.O.I.
10.1103/PhysRevApplied.8.014009
Publisher site
See Article on Publisher Site

Abstract

Efficient suppression of reflection is a key requirement for perfect absorption of light. Recently, it has been shown that reflection can be effectively suppressed utilizing a single ultrathin film deposited on metals or polar materials featuring phonon resonances. The wavelength at which reflection can be fully suppressed is primarily determined by the nature of these substrates and is pinned to particular values near plasma or phonon resonances—the former typically in the ultraviolet or visible and the latter in the infrared. Here, we explicitly identify the required optical properties of films and substrates for the design of absorbing antireflection coatings based on ultrathin films. We find that completely suppressed reflection using films with thicknesses much smaller than the wavelength of light occurs within a spectral region where the real part of the refractive index of the substrate is n≲1, which is characteristic of materials with permittivity close to zero. We experimentally verify this condition by using an ultrathin vanadium dioxide film with dynamically tunable optical properties on several epsilon-near-zero materials, including aluminum-doped zinc oxide. By tailoring the plasma frequency of the aluminum-doped zinc oxide, we are able to tune the epsilon-near-zero point, thus achieving suppressed reflection and near-perfect absorption at wavelengths that continuously span the near-infrared and long-wave midinfrared ranges.

Journal

Physical Review AppliedAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off