Entropy production for complex Langevin equations

Entropy production for complex Langevin equations We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states of the network characterized by a constant production rate of entropy and flows of energy and particle currents. For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role of asymmetric coupling among the oscillators on the entropy production is illustrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Entropy production for complex Langevin equations

Preview Only

Entropy production for complex Langevin equations

Abstract

We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states of the network characterized by a constant production rate of entropy and flows of energy and particle currents. For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role of asymmetric coupling among the oscillators on the entropy production is illustrated.
Loading next page...
 
/lp/aps_physical/entropy-production-for-complex-langevin-equations-gMwtC7eTdy
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.012150
Publisher site
See Article on Publisher Site

Abstract

We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states of the network characterized by a constant production rate of entropy and flows of energy and particle currents. For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role of asymmetric coupling among the oscillators on the entropy production is illustrated.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Jul 27, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial