Entanglement entropy and computational complexity of the Anderson impurity model out of equilibrium: Quench dynamics

Entanglement entropy and computational complexity of the Anderson impurity model out of... We study the growth of entanglement entropy in density-matrix renormalization-group calculations of the real-time quench dynamics of the Anderson impurity model. We find that with an appropriate choice of basis, the entropy growth is logarithmic in both the interacting and noninteracting single-impurity models. The logarithmic entropy growth is understood from a noninteracting chain model as a critical behavior separating regimes of linear growth and saturation of entropy, which correspond respectively to overlapping and gapped energy spectra of the set of bath states. We find that a logarithmic entropy growth is the generic behavior of quenched impurity models when the bath orbitals in the matrix product state are ordered in energy. A noninteracting calculation of the double-impurity Anderson model supports the conclusion in the multi-impurity case. The logarithmic growth of entanglement entropy enables studies of quench dynamics to very long times. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Entanglement entropy and computational complexity of the Anderson impurity model out of equilibrium: Quench dynamics

Preview Only

Entanglement entropy and computational complexity of the Anderson impurity model out of equilibrium: Quench dynamics

Abstract

We study the growth of entanglement entropy in density-matrix renormalization-group calculations of the real-time quench dynamics of the Anderson impurity model. We find that with an appropriate choice of basis, the entropy growth is logarithmic in both the interacting and noninteracting single-impurity models. The logarithmic entropy growth is understood from a noninteracting chain model as a critical behavior separating regimes of linear growth and saturation of entropy, which correspond respectively to overlapping and gapped energy spectra of the set of bath states. We find that a logarithmic entropy growth is the generic behavior of quenched impurity models when the bath orbitals in the matrix product state are ordered in energy. A noninteracting calculation of the double-impurity Anderson model supports the conclusion in the multi-impurity case. The logarithmic growth of entanglement entropy enables studies of quench dynamics to very long times.
Loading next page...
 
/lp/aps_physical/entanglement-entropy-and-computational-complexity-of-the-anderson-HHO8ZAFMg3
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.085107
Publisher site
See Article on Publisher Site

Abstract

We study the growth of entanglement entropy in density-matrix renormalization-group calculations of the real-time quench dynamics of the Anderson impurity model. We find that with an appropriate choice of basis, the entropy growth is logarithmic in both the interacting and noninteracting single-impurity models. The logarithmic entropy growth is understood from a noninteracting chain model as a critical behavior separating regimes of linear growth and saturation of entropy, which correspond respectively to overlapping and gapped energy spectra of the set of bath states. We find that a logarithmic entropy growth is the generic behavior of quenched impurity models when the bath orbitals in the matrix product state are ordered in energy. A noninteracting calculation of the double-impurity Anderson model supports the conclusion in the multi-impurity case. The logarithmic growth of entanglement entropy enables studies of quench dynamics to very long times.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off