Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing

Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×106 cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBV≈3.96  fTcm3/Hz, comparable to the best rf magnetometers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing

Preview Only

Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing

Abstract

We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×106 cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBV≈3.96  fTcm3/Hz, comparable to the best rf magnetometers.
Loading next page...
 
/lp/aps_physical/entanglement-enhanced-radio-frequency-field-detection-and-waveform-rlWac0yACn
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.043603
Publisher site
See Article on Publisher Site

Abstract

We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×106 cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBV≈3.96  fTcm3/Hz, comparable to the best rf magnetometers.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial