Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Preview Only

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Abstract

The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices.
Loading next page...
 
/lp/aps_physical/enhanced-spin-orbit-torque-by-engineering-pt-resistivity-in-pt-co-alox-QubLFgNdQi
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.064405
Publisher site
See Article on Publisher Site

Abstract

The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 3, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off