Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Preview Only

Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/AlOx structures

Abstract

The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices.
Loading next page...
 
/lp/aps_physical/enhanced-spin-orbit-torque-by-engineering-pt-resistivity-in-pt-co-alox-QubLFgNdQi
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.064405
Publisher site
See Article on Publisher Site

Abstract

The magnetization direction in heavy-metal (HM)/ferromagnet bilayers can be electrically controlled by spin-orbit torque (SOT); however, the efficiency of the SOT which depends on the spin-orbit coupling of the HM layer or its spin-Hall angle has to be improved further for actual applications. In this study, we report a significant enhancement of the spin-Hall effect of Pt and resultant SOT in Pt/Co/AlOx structures by controlling the Pt resistivity. We observed that the effective spin-Hall angle increases about three times as the resistivity of Pt layer is increased 1.6 times by changing the Ar deposition pressure from 3 to 50 mTorr. This enhancement in effective spin-Hall angle is confirmed by the reduction in the critical current for SOT-induced magnetization switching. Furthermore, x-ray absorption spectroscopy analysis reveals a non-negligible contribution of the interfacial spin-orbit coupling to the effective spin-Hall angle. Our result, the efficient control of effective spin Hall angle by controlling the HM resistivity, paves the way to improved switching efficiency in SOT-active devices.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 3, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial