Energy jump during bond breaking

Energy jump during bond breaking In current fracture theory, the fracture stress is related to the surface energy on the basis of linear elastic theory. However, the fracture stress does not necessarily exceed the stress required to break atomic bonds. Here, we show that a jump in the inelastic separation energy is generated by fracture, where the inelastic separation energy is the energy between the separation planes measured by excluding the contribution of elastic relaxation, and the stress at the onset of the energy jump is the fracture stress. Analysis of the electronic states of β-SiC (cubic SiC), Ge, and Cu by first-principles tensile tests shows that the electrons redistribute during surface formation in the transition from the onset to the end of the energy jump. Therefore, it is suggested that the inelastic separation energy at the end of the energy jump can be identified with the fracture energy. Also, first-principles shear tests show that an energy jump occurs during shearing for β-SiC, but not for Ge and Cu. Thus, an energy jump is a sign of fracture (bond breaking), and an energy jump during shearing is a good indicator estimating the ductile and brittle character. These principles can hold for any solid and will therefore be beneficial for the fundamental understanding of the mechanical properties of solids and for their industrial applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Energy jump during bond breaking

Preview Only

Energy jump during bond breaking

Abstract

In current fracture theory, the fracture stress is related to the surface energy on the basis of linear elastic theory. However, the fracture stress does not necessarily exceed the stress required to break atomic bonds. Here, we show that a jump in the inelastic separation energy is generated by fracture, where the inelastic separation energy is the energy between the separation planes measured by excluding the contribution of elastic relaxation, and the stress at the onset of the energy jump is the fracture stress. Analysis of the electronic states of β-SiC (cubic SiC), Ge, and Cu by first-principles tensile tests shows that the electrons redistribute during surface formation in the transition from the onset to the end of the energy jump. Therefore, it is suggested that the inelastic separation energy at the end of the energy jump can be identified with the fracture energy. Also, first-principles shear tests show that an energy jump occurs during shearing for β-SiC, but not for Ge and Cu. Thus, an energy jump is a sign of fracture (bond breaking), and an energy jump during shearing is a good indicator estimating the ductile and brittle character. These principles can hold for any solid and will therefore be beneficial for the fundamental understanding of the mechanical properties of solids and for their industrial applications.
Loading next page...
 
/lp/aps_physical/energy-jump-during-bond-breaking-VlpaGiHq0E
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014115
Publisher site
See Article on Publisher Site

Abstract

In current fracture theory, the fracture stress is related to the surface energy on the basis of linear elastic theory. However, the fracture stress does not necessarily exceed the stress required to break atomic bonds. Here, we show that a jump in the inelastic separation energy is generated by fracture, where the inelastic separation energy is the energy between the separation planes measured by excluding the contribution of elastic relaxation, and the stress at the onset of the energy jump is the fracture stress. Analysis of the electronic states of β-SiC (cubic SiC), Ge, and Cu by first-principles tensile tests shows that the electrons redistribute during surface formation in the transition from the onset to the end of the energy jump. Therefore, it is suggested that the inelastic separation energy at the end of the energy jump can be identified with the fracture energy. Also, first-principles shear tests show that an energy jump occurs during shearing for β-SiC, but not for Ge and Cu. Thus, an energy jump is a sign of fracture (bond breaking), and an energy jump during shearing is a good indicator estimating the ductile and brittle character. These principles can hold for any solid and will therefore be beneficial for the fundamental understanding of the mechanical properties of solids and for their industrial applications.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial