Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of U*234 and Pu*240

Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of U*234 and Pu*240 Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the U(d,pf)233 reaction for excitation energies between 4.8 and 10 MeV, and for the Pu(d,pf)239 reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra ∼5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)

Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of U*234 and Pu*240

Abstract

Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the U(d,pf)233 reaction for excitation energies between 4.8 and 10 MeV, and for the Pu(d,pf)239 reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra ∼5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.
Loading next page...
 
/lp/aps_physical/energy-dependence-of-the-prompt-ray-emission-from-the-d-p-induced-cFv0OW4IvI
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.014601
Publisher site
See Article on Publisher Site

Abstract

Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the U(d,pf)233 reaction for excitation energies between 4.8 and 10 MeV, and for the Pu(d,pf)239 reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra ∼5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off