Emergence of Multiscaling in a Random-Force Stirred Fluid

Emergence of Multiscaling in a Random-Force Stirred Fluid We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different “Reynolds numbers” reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3. The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Emergence of Multiscaling in a Random-Force Stirred Fluid

Preview Only

Emergence of Multiscaling in a Random-Force Stirred Fluid

Abstract

We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different “Reynolds numbers” reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3. The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations.
Loading next page...
 
/lp/aps_physical/emergence-of-multiscaling-in-a-random-force-stirred-fluid-IO5W0ntTwz
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.044501
Publisher site
See Article on Publisher Site

Abstract

We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different “Reynolds numbers” reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3. The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 28, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off