Electronic structure and thermoelectric transport of black phosphorus

Electronic structure and thermoelectric transport of black phosphorus We investigate anisotropic electronic structure and thermal transport properties of bulk black phosphorus (BP). Using density functional dynamical mean-field theory we first derive a correlation-induced electronic reconstruction, showing band-selective Kondoesque physics in this elemental p-band material. The resulting correlated picture is expected to shed light onto the temperature and doping dependent evolution of resistivity, Seebeck coefficient, and thermal conductivity, as seen in experiments on bulk single crystal BP. Therein, large anisotropic particle-hole excitations are key to consistently understand thermoelectric transport responses of pure and doped BP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Electronic structure and thermoelectric transport of black phosphorus

Preview Only

Electronic structure and thermoelectric transport of black phosphorus

Abstract

We investigate anisotropic electronic structure and thermal transport properties of bulk black phosphorus (BP). Using density functional dynamical mean-field theory we first derive a correlation-induced electronic reconstruction, showing band-selective Kondoesque physics in this elemental p-band material. The resulting correlated picture is expected to shed light onto the temperature and doping dependent evolution of resistivity, Seebeck coefficient, and thermal conductivity, as seen in experiments on bulk single crystal BP. Therein, large anisotropic particle-hole excitations are key to consistently understand thermoelectric transport responses of pure and doped BP.
Loading next page...
 
/lp/aps_physical/electronic-structure-and-thermoelectric-transport-of-black-phosphorus-dxxKDvoq80
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.075118
Publisher site
See Article on Publisher Site

Abstract

We investigate anisotropic electronic structure and thermal transport properties of bulk black phosphorus (BP). Using density functional dynamical mean-field theory we first derive a correlation-induced electronic reconstruction, showing band-selective Kondoesque physics in this elemental p-band material. The resulting correlated picture is expected to shed light onto the temperature and doping dependent evolution of resistivity, Seebeck coefficient, and thermal conductivity, as seen in experiments on bulk single crystal BP. Therein, large anisotropic particle-hole excitations are key to consistently understand thermoelectric transport responses of pure and doped BP.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 9, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off