Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave... We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

Preview Only

Electronic-nuclear entanglement in H2+: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

Abstract

We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.
Loading next page...
 
/lp/aps_physical/electronic-nuclear-entanglement-in-h2-schmidt-decomposition-of-non-YPx0r6QOQM
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022503
Publisher site
See Article on Publisher Site

Abstract

We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 2, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial