Electrical and thermal tuning of quality factor and free spectral range of optical resonance of nematic liquid crystal microdroplets

Electrical and thermal tuning of quality factor and free spectral range of optical resonance of... We experimentally study the effect of temperature and electric field on the quality (Q) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field. The variation of the Q factor and FSR is understood based on the change in the effective refractive index and the dynamic size of the microdroplets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Electrical and thermal tuning of quality factor and free spectral range of optical resonance of nematic liquid crystal microdroplets

Preview Only

Electrical and thermal tuning of quality factor and free spectral range of optical resonance of nematic liquid crystal microdroplets

Abstract

We experimentally study the effect of temperature and electric field on the quality (Q) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field. The variation of the Q factor and FSR is understood based on the change in the effective refractive index and the dynamic size of the microdroplets.
Loading next page...
 
/lp/aps_physical/electrical-and-thermal-tuning-of-quality-factor-and-free-spectral-000rG3D6gc
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022702
Publisher site
See Article on Publisher Site

Abstract

We experimentally study the effect of temperature and electric field on the quality (Q) factor and free spectral range (FSR) of whispering-gallery-mode optical resonance of dye-doped nematic liquid crystal microdroplets. Both the Q factor and the FSR are highly sensitive to the temperature and electric field and are tunable. The Q factor decreases, whereas the FSR increases substantially, with increasing temperature and electric field. The variation of the Q factor and FSR is understood based on the change in the effective refractive index and the dynamic size of the microdroplets.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial