Electric nonadiabatic geometric entangling gates on spin qubits

Electric nonadiabatic geometric entangling gates on spin qubits Producing and maintaining entanglement reside at the heart of the optimal construction of quantum operations and are fundamental issues in the realization of universal quantum computation. We here introduce a setup of spin qubits that allows the geometric implementation of entangling gates between the register qubits with any arbitrary entangling power. We show this by demonstrating a circuit through a spin chain, which performs universal nonadiabatic holonomic two-qubit entanglers. The proposed gates are all electric and geometric, which would help to realize fast and robust entangling gates on spin qubits. This family of entangling gates contains gates that are as efficient as the cnot gate in quantum algorithms. We examine the robustness of the circuit to some extent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Electric nonadiabatic geometric entangling gates on spin qubits

Preview Only

Electric nonadiabatic geometric entangling gates on spin qubits

Abstract

Producing and maintaining entanglement reside at the heart of the optimal construction of quantum operations and are fundamental issues in the realization of universal quantum computation. We here introduce a setup of spin qubits that allows the geometric implementation of entangling gates between the register qubits with any arbitrary entangling power. We show this by demonstrating a circuit through a spin chain, which performs universal nonadiabatic holonomic two-qubit entanglers. The proposed gates are all electric and geometric, which would help to realize fast and robust entangling gates on spin qubits. This family of entangling gates contains gates that are as efficient as the cnot gate in quantum algorithms. We examine the robustness of the circuit to some extent.
Loading next page...
 
/lp/aps_physical/electric-nonadiabatic-geometric-entangling-gates-on-spin-qubits-uR89QpDB0X
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.012307
Publisher site
See Article on Publisher Site

Abstract

Producing and maintaining entanglement reside at the heart of the optimal construction of quantum operations and are fundamental issues in the realization of universal quantum computation. We here introduce a setup of spin qubits that allows the geometric implementation of entangling gates between the register qubits with any arbitrary entangling power. We show this by demonstrating a circuit through a spin chain, which performs universal nonadiabatic holonomic two-qubit entanglers. The proposed gates are all electric and geometric, which would help to realize fast and robust entangling gates on spin qubits. This family of entangling gates contains gates that are as efficient as the cnot gate in quantum algorithms. We examine the robustness of the circuit to some extent.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off